DTIC FILE COPY

OFFICE OF NAVAL RESEARCH
PROGRAM ELEMENT 61153N
TECHNICAL REPORT NO. 7

REACTION CHEMISTRY OF BORON HYDRIDES

BY

H.H. NELSON

Published

in the

Proceedings of the JANNAF Panel on
"Kinetic and Related Aspects of Propellant

Combustion Chemistry*

2-4 May 1988

Laurel, Maryland

CHEMISTRY DIVISION

NAVAL RESEARCH LABORATORY

WASHINGTON, DC 20375-5000

MAY 1988

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale, its distribution is unlimited

SECURITY CLASSIFICATION OF THIS PAGE

				REPORT DOCU	MENTATION	PAGE		
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED					1b. RESTRICTIVE MARKINGS NONE			
2a. SECURITY CLASSIFICATION AUTHORITY					3 DISTRIBUTION/AVAILABILITY OF REPORT			
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE					UNLIMITED			
4. PERFORMI	NG ORGANIZA	TION RE	PORT NUMBE	ER(S)	5. MONITORING	ORGANIZATION R	EPORT NUN	IBER(S)
6a. NAME OF PERFORMING ORGANIZATION				6b. OFFICE SYMBOL	7a. NAME OF MONITORING ORGANIZATION			
Naval Research Laboratory				(If applicable)	Chemistry Division Office of the Chief of Naval Research			
	(City, State, an		•		7b. ADDRESS (City, State, and ZIP Code)			
Washingt	on, DC 20	375-5	000		Arlington	, VA 22217-5	000	
ORGANIZA	FUNDING/SPO	NSORIN	IG	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
ONR					10. SOURCE OF FUNDING NUMBERS			
8c. ADDRESS (City, State, and ZIP Code)					PROGRAM	PROJECT	TASK	WORK UNIT
					ELEMENT NO	NO.	NO.	ACCESSION NO
44 71716	lude Security (61153N	RR013-01-4C	<u> </u>	
13a. TYPE OF			13b. TIME C			ORT (Year, Month,	Oay) 15. P	AGE COUNT
technica			FROM 9/	<u>′87 το 9/88</u>	2-4 May 198	38		
16. SUPPLEM	ENTARY NOTA	TION						
17.	COSATI	CODES		18. SUBJECT TERMS	Continue on reverse if necessary and identify by block number)			
FIELD GROUP SUB-GROUP								
	<u> </u>			{				
19. ABSTRACT	(Continue on	reverse	if necessary	and identify by block	number)	"		
We have	recently b	egun	a progra	m on Boron Comb	ustion Chemi	stry in the	Chemist	ry Division
at NRL.	Our initi	al ef	forts ha	ve involved inv	estigations	of the room	tempera	ture
the das-	s of BH3[1 Chase expe] and	(BH(2) work	ith various oxi , we are pursui	dants and hy	drocarbons.	In con	junction with
formation	n of boron	comp	ounds an	d reaction ener	getics. In	addition, th	y or the nere is	neats of a compound
of the pr	rogram emp	hasiz	ing the	heterogeneous c	hemistry of	boron oxides	. 7773	_
•	/ *							
	TION/AVAILAB		_		21. ABSTRACT SECURITY CLASSIFICATION			
	SIFIED/UNLIMIT F RESPONSIBLE		SAME AS F	PT. DTIC USERS	UNCLASSIFIED 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL			
J.R. McDonald					(202) 767-			
				a train a hanna				

REACTION CHEMISTRY OF BORON HYDRIDES

H. H. Nelson Chemistry Division Naval Research Laboratory Washington, DC 20375

We have recently begun a program on Boron Combustion Chemistry in the Chemistry Division at NRL. Our initial efforts have involved investigations of the room temperature reactions of BH₃ [1] and BH [2] with various oxidants and hydrocarbons. In conjunction with the gas-phase experimental work, we are pursuing a computational study of the heats of formation of boron compounds and reaction energetics. In addition, there is a component of the program emphasizing the heterogeneous chemistry of boron oxides.

BH₃ is produced by the 193 nm photolysis of BH₃CO or B₂H₆. BH is only observed after BH₃CO photolysis, not from B₂H₆. BH₃ is probed by monitoring time resolved IR absorption in the Q-branch of the ν_2 band near 1140 cm⁻¹ using a tunable diode laser. Most experiments were performed with B₂H₆ as the photolytic precursor because of less spectral congestion in the IR. A schematic diagram of the apparatus used for BH₃ measurements is shown in Figure 1. The BH experiments are carried out in a more conventional laser photolysis/laser induced fluorescence apparatus in which BH is probed by exciting fluorescence in the A¹ Π <-> X¹ Σ ⁺ system near 430 nm.

We find the association reaction of BH₃ with CO to be in the intermediate pressure regime over the pressure range studied (10-620 Torr, N₂) with rate constants ranging from 1.5 to 47 x 10^{-13} cm³ s⁻¹. For BH₃ + NO, the rate constant approaches the high-pressure limit of 3.7 x 10^{-13} cm³ s⁻¹ at pressure $\simeq 200$ Torr N₂. The pressure-independent rate constant (P \geq 6 Torr) for the reaction of BH₃ + C₂H₄ is (5.2 \pm 1.0) x 10^{-11} cm³ s⁻¹. For the reactions BH₃ with O₂ and H₂O we are able to place upper limits of 5 x 10^{-15} and 6 x 10^{-15} cm³ s⁻¹, respectively, on the reaction rate constants.

Room temperature reactions of BH are primarily pressure-independent in the 5 to 1000 Torr pressure range. The rate constants derived from our measurements are listed in Table 1.

TABLE 1: Room-Temperature Rate Constants for BH Reactions

Reaction	k (cm ³ s ⁻¹)			
BH + NO	$(1.35 \pm 0.03) \times 10^{-10}$			
,βH + H ₂ O	$(9.76 \pm 0.40) \times 10^{-12}$			
BH + O ₂	$(8.08 \pm 0.09) \times 10^{-13}$			
BH + CO ₂	$(2.64 \pm 0.07) \times 10^{-14}$			
$BH + C_2H_4$	$(1.17 \pm 0.02) \times 10^{-10}$			
BH + TME*	$(1.87 \pm 0.07) \times 10^{-10}$			

a) 2,3 dimethyl-2-butene

We have also studied the reaction of BH with H_2 and are able to measure the pressure dependence of this reaction over the range 10-700 Torr (see Figure 2) and extract the following kinetic parameters: $k_o = (1.05 \pm 0.11) \times 10^{-31} \text{ cm}^6 \text{ s}^{-1}$, $k_{\infty} = (3.52 \pm 0.42) \times 10^{-13} \text{ cm}^3 \text{ s}^{-1}$, and $F_e = 0.51 \pm 0.06$. The reaction of BH with CO is in the transition region at these pressures with the rate constant ranging from 3.9 to 58 x 10^{-13} cm³ s⁻¹.

Mechanistic details inferred from these measurements and our plans for further work in this field will be discussed.

References:

- 1. L. Pasternack, R.J. Balla, and H.H. Nelson, "Study of Reactions of BH₃ with CO, NO, O₂, C₂H₄, and H₂O Using Diode Laser Absorption". J. Phys. Chem., <u>92</u>, 1200 (1988).
- 2. J.K. Rice, N.J. Caldwell, and H.H. Nelson, "The Gas-Phase Reaction Kinetics of BH", manuscript in preparation.

Figure 1. Schenatic diagram of the apparatus used to study BH₃ reactions.

Figure 2. Observed pressure dependence for the reaction BH + H₂ at room temperature. The solid line is a fit to the data using parameters given in the text. The dashed line is the fitted high pressure limit.